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Abstract-We studied therespiratory related modifications of RR
interval (RRI) variability in post-operative, artificially
ventilated patients during their recovery from anesthesia after
cardiac surgery. An ARX model was used to exploit the
relationships between RRI and respiration in sub-bands signals
obtained through Wavelets packets decomposition. We found
that the recovery from anesthesia is accompanied by progressive
reduction of the influence of ventilation on RR variability and
by the reappearance of physiological modulations of the sinus
node activity.
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|. INTRODUCTION

It is known that respiration affects the spontaneous begt-to-
bet RR intevd (RRI) vaidbility [1][2]. In normd
conditions, the power spectrum of RRI shows a high-
frequency (HF) spectrd pesk synchronous with respiration,
which is mediated by vagd activity [2], and which is index of
the respiratory sinus arrhythmia (RSA).

However influence of respiration on RRI may be
extremey complex, especidly when repditive, non-
physologicad externd <imuli are gpplied as for atificidly
ventilated patients. The non-sinusoida, wide-band ventilation
wave paterns, the presence of trandent or non-linear
activities, may be regponsible for respiration influence
affecting the RRI spectrum in a wider range of frequency
[3][4][5], even overlgpping or entrain the LF component [6].
In these cases, the correct quantification of RSA is difficult
and the separation between respiratory-rdated and -unrelated
RR varigbility may be crucid.

Wavdets Peckets (WP) have recently proposed a this
regad [7][8]. WPs provide a dgnd adaptive framework
which dlows to exploit the reationships between RRI and
ventilation in non-uniform sub-band which may be adapted to
the contents of the anadyzed signals[9].

In this paper Wavelet Packets were used to filter the RR
interva and respiratory variability and to generate a st of
orthonorma sub-bend  dsgnds. AutoRegressive  with
exXogenous input (ARX) modds [10] were used to describe
the reationships between the Sgnds in the different sub-
bands. From the edimated parameters of the sub-band
models, the respiratory related component of RRI  was
recongructed in full-band. Changes in the respiratory-related
RRI varigbility were sudied in anaesthetized, pogst-operdtive
cardiac patients and rlated to the level of sedation.

Il. METHODOLOGY
A BExperimental protocol

We dudied 38 patients during their recovery from
anesthesa after cardiac surgery. 20 patients had standardized

propofol-afentanil anesthesa and the remaining 18 patients
had midazolam-fentanyl aneshesa. All data were extracted
fromthe|BIS Data Library (DL) [12].

From the DL recordings, 187 daionay and artifact-free
epochs (5 minutes length) were sdected in correspondence of
the messurements of Ramsay score Segments were  divided
according to the Ramsay vaues and two seddion dtates were
conddered. Namey, the Degp Seddtion (DS, Ramsay >= 4)
and Light Sedation (LS Ramssy < 4) daes roughly
correponding  to  unconscious  and  conscious dates
respectively.

B. Sgnal analyss

For eaxch segment, the RRI saies was  automaicdly
extracted from ECG and manudly corrected by an expert
operator using commercidly avalable oftware (Cardioline
Remco Itdia, AD35 Top). After linear interpolaion of
successve heart beets data were resampled a 12.5Hz. The
arway pressure sgnds (AWP) was recorded & 25Hz and
downsampled to 125 Hz. Rdatively high sampling rate was
sected in order to correctly describe the faster dynamics,
which characterizes the AWP dgnd in atificidly ventilated
patients.

Redationships between RRI and AWP vaidbility were
described by an ARX modd, which dlows to divide the RRI

short term variability into two contributions [10]: a
respiratory rdaed (RSA) and a non-respiratory (NRSA)
component.

In order to improve the peformance of ARX modd
identification, a pre-processing filtering (based on waveet
packets transformation) of RRI and AWP was gpplied
according to the sgnd processing scheme of Fg. 1 The
procedure was based on three steps i) WP decomposition of
both RRI and AWP vaiability and creation of a sat of
othonorma sgnds, i) ARX identifications and separation
of RSA and NRSA components in the sub-bands and iii)
signas recongtruction in full-band.

There ae a few methodologicad and experimenta aspects,
which suggest applying the ARX identification in sub-bands.
The sub-band signas obtained by WP decompostion contain
orthonormd information, in different frequency ranges, on
the relationships between RRI and AWP variability. Thus, the
complex problem of quantifying these interactions in full-
band is split into a finite set of easer sub-band problems. The
application of WP decompostion for sub-band analyss has
been documented to be effective for spectrd andyds and
adeptive filtering [11], as wdl as for the identification of
ARX parameters[g].

In order to improve ARX identification the crucid point
is to sdect the decomposition scheme, which dlows the best
identification of model parameters. The best decomposition is
obtained by an iterative procedure, which splits or merges
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sub-bands according to the sdatisfaction of predefined
criterion. In our case, the criterion was the uncertainty of the
edimation of ARX paamees messured as the Eudidean
norm of the edimae vaiance of modd paameters. The
decompogtion, which minimized the criterion, was sdected
and the most robust mode identification was obtained.
Vdidation of this gpproach usng smulaed data may be
foundin[8].

WP decompostion was peformed using a Daubechies-20
waveet [13]. ARX modd identification was carried out by a
least-square method and modd orders were automaticaly
sdected using the AIC criterion [14)].

After sub-band identification, full-band RSA and NRSA
varigbility dgnas were recondructed. To quanttify the
respiratory-rdaed influence on RRI, three indexes were
computed: @) the gain of the tranfer function between RRI
and AWS

G-= PRSA
I:)AWS

where Prsa is the power of RSA and Paws if the tota

power of AWS variability; b) the percentage of RSA

RSA,/U — PRSA
I:)RRI
where Prry = Prsa + Pusra is the totd power of RRI
varigbility and 3) the relative variation of RSA

P
R = __RSA
o PCrsa
where P’ren is the power of RSA as messured in
correspondence of the highest Ramsay score for that patient.

1. RESULTS

Fig2 shows the results obtaned for the edtimaed
parameters in one of the studied subject. Note the decressing
of gan G when pasing from deep sedation to light sedation
levels. This decreese is accompanied by a progressive
reduction of both RSA, and RSA,. These results suggest that
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Fig. 2 @) Trend of the estimated parameters as a function of the Ramsay
score; a) the transfer function Gain, b) the percentage of RSA and c) the
relative variation of RSA.
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Fig. 1. The estimation of RSA is obtained by a three steps procedure based on: a) WP decomposition, b) sub-band

identification and c) signal reconstruction (see text for details).



the rdative influence of ventlaor on RRI vaiadility is
progressvely reduced during recovery from aneshesa In
agreement, there is the enforcement of NRSA contributions
as evidenced by the decreasesthe RSAy, index.

Globa reaults are shown in table I, which reports the
edimaed parametars during DS and LS daes Data ae
divided according to the sedaive agent used. No differences
were found between the two drugs (paired ttest), thus results
ae independent from the sedative agent used. A dgnificant
reduction of gan G was obsaved passing from DS to LS in
agreement with the recovery of neurdly mediated modulation
of RRI (pared t-test). The direct influence of ventilaion is
therefore reduced and the spontaneous variability (sometimes
in contras  with mechanicad breathing) may cause the
reduction of gain parameter. Such observation is confirmed
by the sgnificant reduction of RSAy, index, which evidenced
the regppesrance of RRI modulations independent from the
externd ventiletion.

TABLE|I
GLOBAL RESULTS
Deep Sedation Ligth Sedation
M P M P
G 1.1+0.1 1.2+0.09 0.6+0.05" 0.5+0.04"
RSAy  0.25+0.01 0.27+0.02 0.18+0.01" 0.14+0.02"
RSA, 0.98+0.05 0.99+0.05 0.61+0.04" 0.63+0.05"

M: midazolam-fentanyl; P: propofol-alfentanil; ' p< 0.01 DSvs. LS.

IV. DISCUSSION AND CONCLUSION

A wavde packet based method for the identification of
respiratory-related modifications of RRI varigbility have been
applied to the study of post-operaive patients during their
recovery from aneshesia after cardiac surgery. The proposed
goproach was able to separate the respiratory-rdaed RRI
patterns and to quantify it in the different physologica
gtuations, which characterize the LS and DS dates It is
worth noting that the ventilaion mode changed for the
patients when they were waking up. Immediady after the
surgery the ventilation mode was ‘forced ventilation’ (i.e. the
rate and the depth of ventilation were totaly controlled by the
maching). When the patients were waking up the ventilaion
mode was changed to ‘supported ventilaion' (i.e. both rate
and phase of ventilation were controlled by the patient). In
addition, the ventilator sgnd shepe was  different during
these modes. Hence, the two dtuations correspond to
different physiologicd modes. It should be noted thet the
proposed approach did correctly capture this difference. In
fect, we found a reduction of G pasing from DS to LS in
agreement with  the  modified  ventilation  Strategy.
Accordingly, the rdative RSA was reduced as a consequence
of the reduced externd stimulation.

In addition, we found a dgnificat reduction of RSA
percentage with the recovery of anesthesia, in line with the
hypothess of a progressive recovery of physologica
modulation of snus node. Posshly, the shifting from forced
to spontaneous vertilation may play a role by enhancing

these changes.

In concluson, the presented WP method for the
identification of respiratory-related modifications of RRI
provides new indexes, which ggnificantly changes from LS
and DS levels thus suggesting their agpplication for a more
detalled description of cardiac surgery patient date during
anesthesa
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